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1. Introduction

Mathematical statistics almost always deals with either discrete or continuous
random variables, but it is not so in real problems. Many functions of distribution
used in various models (in particular, for modeling insurance payments or
consumer choice) have both "continuously increasing" sites territory, and some
positive jumps. In the present paper we consider random variables of mixed type:

p=1-+(1-1)-v, (1)
where & is a continuous random variable (c.r.v.), v is a discrete random variable
(drv.), and [ is a Bernoulli random variable with parameter p= P(I = 1),
(1- p)=P(1=0), such that I is stochastically independent on & and v .

The distribution function F, (1) is a mix (a convex combination) of random
variables & and v

F,()=p-F:(u)+(-p)F, b))

and it is the function of the mixed, discrete-continuously type. Random variables of

the form (1) are widely used in actuarial mathematics to model individual risks [1],
in determining insurance rates and reserves, and also in reinsurance.
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In this work authors consider a special case of variables (1) which have a positive
jump at a given point c.
Let & be a c.r.v. with distribution function F§ (1) and finite expectation, let d.r.v.
v have a degenerate distribution, i.e. P(v =c ) =1, ¢>0, and let v have a distribution
function
F (u)zp(v<u)={°’ u<e,
1, uzc.
Then (1) takes the form
p=I1-+(1-1)c (3)
or it can be written equivalently
€, with probability p,
- {c, with probability 1- p.
Definition 1. A random variable of the form (3) is called a "two-parametric random
variable of mixed type". Value of jump (1- p) and location of the jump ¢ are

parameters of jump and location accordingly. In considering the location ¢ there are
two situations:
1. Let ¢ belong to a range of values of c.r.v.&, i.e. ¢ € Ran (c";) In this case (2)

can be written equivalently (fig.1)

ng(u), u<ec,
Fp(u)_{ng(u)Jr(l—p), uzc. ¥
1+ — F,(uv
Ty
1-p
Fe(u)

Figure 1. Distribution function of c.r.v. & and distribution function of random variable

p for the case ¢ € Ran (&)

2. Let ¢ do not belong to a range of values of c.r.v.&, i.e ¢ & Ran(&)=[b,).
In this case (2) can be written equivalently (fig.2)
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0, u<c,
Fp(u)z 1-p, c<u<b, ®))
ng(u)+(1—p), uz=b.

The interval [c, b) is called "blind interval."

Figure 2. Distribution function of c.r.v. £ and distribution function of random
variable p for case ¢ ¢ Ran (&)= [b,0).

In practice it is often assumed that & has an exponential distribution. Then
the case ¢ € Ran (E;) describes, for example, a class of distributions which are used
for modeling insurance payments [1]. Assuming ¢ ¢ Ran (é’;)z [b,oo) and ¢c=0 we
obtain a class of distributions of Gibbs random variables G, [2] A key property of

a Gibbs random variable is that it does not take values in the "blind interval" [0, b].
This property was pointed to by some interpretations of statistical theory of
consumer choice [2], where a price of random purchase is a random variable of
mixed type which has distribution significantly separated from zero (for most
goods and services), while a zero value of the purchase price (corresponding to the
absence of purchase) has a positive probability.

In the model of individual risks the insurance payments made by an insurance
company, are represented as the sum of payments to many individuals [1]. The
central limit theorem provides a method for finding the numerical values for the
distribution of sums of independent random variables [3]. Here we offer
mathematical tools allowing to work with joint distributions of random variables of
the mixed type (3), and generalizes the results received earlier [2, 4, 5, 6].

2. Random set decomposition
Eventology [7] is a new direction of probability theory which is based on the
Kolmogorov's axiomatics which is added by two eventological axioms: a

sufficiency and a simpliciality [8]. The basic objects of researches are sets of
random events and their eventological distributions. Eventology studies the
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structures of the dependences of the sets of events. It allows to include the
mathematical model of a person, together with his/her persuasions, in a subject of
the scientific research of in the form of eventological distribution (E- distribution) of
the set of his/her own events, i.e. allows to consider any kinds of the set of events
which are perceived and/or created by a person. New eventological language, new
eventological methods and approaches allow formulating and solving various tasks
in socio-economic areas which did not manage to formulate and solve earlier within
the limits of traditional approaches.

Let's consider the set of random events S < A chosen by the algebra of the

probabilistic space (Q,A,P), or (that is equivalent), random set of events

K:(Q 4,P)—> (25 2% ) under a finite set of events S, where S < A4 is a finite
set of events (consisting of N = | S| events, i.e. |S| denote the cardinality of set S),
2% is the power set of S.

Each chosen event x e S divides sample space into two disjoint events

Q=x+x“. These disjoint events are the event x and the event x“ =Q — x which
is its complement. In eventology the subsets or fragments of dividing € are called
events-terraces generated by the finite set of events S < 4. All set of events S

divides sample space into disjoint events-terraces of the following form:

ter(X):(ﬂxJﬂ{ﬂchz ﬂx me, (6)

xeX xeX© xeX  xeX‘
where x*=Q-x, X°=S-X, XcS.
Definition 2. Events (6) are called events-terraces of /-st sort, where
Q= Zter(X) and ter(X)Nter(Y)=0 < X #7.
XcS

Definition 3. Eventological distribution (E-distribution) of /-st sort of the set of
random events S of the power of set N = | S| is a collection

pr={p(X), XS} of 2N probabilities of event-terraces of I-st sort [7]
generated by this set of events in which

p(X)zP(KzX)zP(ter(X)):P(ﬂx ﬂx} (7)

xeX  xeX‘
The events-terraces (6) form the partition Q inall X<S: Q= > ter (X )
XcS
and provide of probabilistic normalization )’ p(X )=1 for this sort of E-

XcS
distribution of the set S .
Definition 4. Events
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tery, = [)x (8)
xeX

are called events-terraces of //-nd sort.
Definition 5. E-distribution of II-nd sort of the set of random events S of the

power N :|S| is a collection py; = { Py, XcS } of 2V probabilities of event-

terraces of /I-nd sort [7] generated by this set of events in which

pX=P(KQX):P(terX)=P[ ﬂxJ, XcsS. 9)
xeX

The event-terraces (8) form is not a partition, but only covering €, then the
normalization relation for the E-distribution of //-nd sort is not satisfied. The sum
of probabilities such event-terraces always there is more than unit:

Srx= 22 p(x)>1.
XcS XcS
E-distribution of the //-nd sort is connected with E-distribution of the /-st sort
by Mébius inversion formulas

px= 2pl¥) plx)= Z(_l)‘y‘_‘X‘PY-
XcY XcY
On the example of an arbitrary doublet of events S={x y} with E-
distribution of I-st sort {p (@), p({x}), p({»}), p({x,»})} and E-distribution
of /I-nd sort {pg, Pixls Dy} p{x,y}} we write out the Mobius inversion

formulas:

Po=p@)+p({x})+p(ly})+p(x.y})=
{

Pivyy=p{x,y})=PNy).
On the other hand,

P@)=po=Plaj= PP i)

PE=pi=P iy PO)=PGm Py PO)=p )

A random set of events is a random element with values in a power set S,
where S is a finite set of selected events. The main idea of the contemporary theory
of random sets asserts that the structure of statistical interdependence of subsets of
a finite set is completely determined by the distribution of the random set which is
defined on the power set. Distribution of a random set is a convenient mathematical

tool for description of all conceivable ways to combine elements in coalitions, in
other words, all the ways of interaction among elements.

" Though the theory of random sets has well-traced connections with the multivariate statistical
analysis, the subject of its researches is a random finite abstract set which essentially differs from a
random vector that belongs to the abstract spaces which do not have habitual linear structures.
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Enumerate the N random variables of the form (3) by the elements of the set S
in order by first difference (lexicographical order). Let's consider N-dimensional
joint distribution of random variables

{poxesi={1, & +(1-1,)c,.xes},
where forall xe S
o £ iscrwv,

e ¢, 20is an invariable,
¢ and we associate Bernoulli random variables /, with indicators
A NCE
0, x¢K.

The components of the random vector { P, XE S} are random variables of
the mixed type. Hence we can say that the random vector { Py, XE S} is
constructed from a random vector {&,, xe S} composed of N continuous random
variables§,, x € S by adding jumps at the points {cx ,XE€E S} .

Let's consider the events

IX={[ﬂ{1x=1}]m[n{1x=o}]}={m{zx:mm:o}}

xeX xeX* xeX xeX*¢
forall X ¢ S, where X° =S\ X is the complement of a subset of events X to S,

and x“ =Q\x is the complement of an event x. Note that an event I, means that
all the Bernoulli random variables indexed by elements x of the set X take a value of
l,ie. I, =1 forall x € X, and all the Bernoulli random variables from set X take
zero value. Thus, the event I, is a partition of the Bernoulli random vector into two
parts:
{]x,xe S}:{l,xeX}+{O,xeX"}.
The number of such partitions coincides with the power of set S. In [9] is

proved the following statement:
Statement. The set of events {1, , X S} forms an exhaustive event.

3. Theorem on decomposition of joint distribution on random set basis

Theorem 1. For a joint distribution of two-parametric random variables of mixed
type {p L, XE S} the random set decomposition

F(u,xeS)=P (ﬂ{px <ux}J= Z Fylu,,xe8) p(x), (10)

xeS XcS

takes place, where

193



PROCEEDINGS OF 1AM, V.1, N.2, 2012

o the random set basis {p(X), X < S}

p(0)=P (1, )= {m{zx =1}m{1x=o}}; )

xeX xeX©
e the quantitative superstructure is the collection of the conditional
distribution functions {F (u,,xeS), Xc S}:

Fy(u,xeS)=F. (u,xeX) HF (12)
xeX®
where
°F. (u,xeX)=P { ﬂ (& <u,} IXJ is the conditional distributions of a
xeX

continuous random vector {&,,x € S} conditioned on the event I, occurrence;
o F, (u,) is the distribution function of the degenerate random variables

. 1, 2 R v Xc
¢, , x € S, herewith HFC.(ux): u,2¢, xXe
ext 0, otherwise.

Proof. Consider the joint distribution of two- parametric random variables of
mixed type of the form (3) {p,,xeS}

F(ux,xes)zp(m{px%}j.

xeS
The values taken by random variables {p , x € S} depend on the values which
Bernoulli random variables 7/, ,xe€S take. Let's notice that the number of
partitions of all the components of the vector {I v, XE S} equal to the power set S,

then z I, =Q. Since, set of events {I vy X C S} form an exhaustive events
Xe2s

(6), hence from (7) P (I, )=P (K = X)=p(X), X cS.
Therefore, using the formula of total probability we have the following
representation

F(ux,xeS)zP(ﬂ{pX <u”}J:

-ZP(ﬂ{pxS:S} j 1= 2 Pl es) p (1):

XcS xeX

Consider the conditional distribution functions

Fx<ux,xes>=P[Q{px<ux} J
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Since, random variables p, of a set x € X accept continuous values &, at

approach of an event Iy, and random variables from a set X accept values c,,
then

P (ﬂ le, <ux}j ﬂ(ﬂ {e, <ux}j :

xeX xeX¢

Note that random variables &, and c, are independent for all x €S, then

P(ﬂ{fx<ux}j'P(ﬂ{cx<ux}j=F§ u,xeX) [[F. (u

xeX xeX© xeX*
.where

e X =S\X,

* Fy, (u,, x € X)is the joint distribution function of a continuous random
variables {&, ,x €S},

* F. () is the distribution function of degenerate random variables

c,,X€S.
Hence, we obtain the decomposition

Fluy,xeS)= Y |Fe,(up.xeX) [1 F. (u)|-p(X). (13
XcS xeX¢
Thus, the theorem is proved.

Note that the sum (10) contains 2V summands each of which is representable
as a product of an element of the quantitative superstructure (12) on the
corresponding element of the basis (11).

Thus, it is possible to speak about two-level structure of dependences and
interactions of the components of the random vector {p (s XE S}. The first is the
random set level which is responsible for full structure of statistical dependences
and interactions of random events. It forms the random set Dbasis
p, = { P (X ), XcS } The second is the quantitative level which is responsible for

structure of dependences and interactions of components of the joint distribution of
the two-parametric random variables of mixed type in a quantitative superstructure
{F ¥ (u,,xeS), X c S} as the set of the conditional distribution functions from the

joint distribution of the continuous random vector {& , x € S}.
Let's consider independence of a superstructure. Let N = | S| marginal
functions of distribution of c.r.v. F , x€S are known and let cr.v. &, are total

independence. Then

Fe (u,, xeX)= [17, (i, ).
xeX
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Hence, sum (13) takes the form

F(”x’ xeS)z Z ( H Féx(ux)}( H ch(ux)}‘p(X)' (14)
XcS \xex xeX€

Further, we assume independence of the basis. E-distribution for total
independence set of events S has to form [10]

HpYH , XcS.

xeX xeX®
Then sum (10) has following form

Flu,, xeS)= Z(HF }(HFCX ] [1r.T]0-p.) .05

XcS \xeX xeX¢ xeX xeX¢
4. Example for the doublet of events

Let S={x »} be an arbitrary doublet of events with E-distribution of I-st

sort {p(@), p({x}), p({y}). p({x. 9 }) ).

Enumerate random variables (3) of elements of set S = { X,y }
peopy =10+ (=1 ) e 1,8, +(1=1, )c , }.
Find the joint distribution of random variables
Flupou, )= B{ip, <, Nip, <u, )
The values of the random variables depend on the values /, and /. In this
example 4 variants are possible:
1. Iy =11, =0,1,=0{ for event X =& with probability p(&). In that
case Py =Cy, Py, =C,.
2.1, =11,=1,1, =0 for event X ={x} with probability p({x}). In
that case p, =&, p, =c¢,,.
3.1,y ={1,=0,1, =1{ for event X ={y} with probability p({y}). In
that case p, =c,, p, =§,,.
4, I{x’y}z {Ix =11, =l} for event Xz{x,y} with  probability
p({x y }) In thatcase p, =&, p, =§,.
Note that
P({7,=1})=P(1y,) )+ P(1;, ) )=p({x})+ p({x »}).
The events {I@ s Iy I y}} form an exhaustive event, then on the

formula of total probability we obtain

P({p, <ux}ﬂ{py <uy})=
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+P ({p. <} 0o, <u,}|1. ) pl{x.0})

Consider each summand individually.
1. Since p, =c,,p, =c,; ¢, in Iy and c, has degenerate distributions,
then
P ({p, <utio, <u,j10)=Plle, <u ) Nie, <u, )=
) =

(e <) 1Pl <uy})—1~;<uwuy3

l, u,2c.,u,2c,
0, otherwise.
2. Since in I the random variables p, =&,,p, =c,, &, and ¢, are

independent, because ¢, has degenerate distribution, then
P({px<u }ﬂ{pv<u ‘IY) ({é‘ <u }ﬂ{c <u }):
=P({&y <ue} ) Pliey <uyf)=F, (u)F, (uy )=Fpluu,)=

_ ng (ux ), Uy, 2cy,,
0, Uy <cy,

where F' . (u, ) is the distribution function of c.r.v. &, .
3. Similarly, we obtain
P ({px <ux}ﬂ{py <uy}‘l{y})=P({cx <ux}ﬂ{§y <uy})=
F ;
=F, (e )-Fiy (uy ):F{y}(ux ,uy)z{o,iy (”y ) uu

where F ¢ (u y ) is the distribution function of c.r.v. §,, .
y
4. Since p, =&,,p, =§,,in I then
P (1o <ufnlo, <u |1 )=plie <ufnle, <u )=

SUy |, Uy 2Cy Uy 20,
:F{x’y}(ux, y) {O{Ex&y( y) x y=ry

, Uy <Cyylly <Cy,
where F;_ £ (ux Uy, ) is the joint distribution function of c.r.v. &, and §,, .

In summary, we obtain the decomposition (fig.3.)
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Figure 3. Example of the graphical representation of the joint distribution function of two-parametric
discrete-continuous random variables p , and P, (b). It is constructed from the joint

distribution of c.r.v. &y and &, (a).

We give the following interpretation for this example. Under an event in
statistical system of a consumer choice we understand the purchases (sale) of these
or those goods. These goods take part in trade turnover in the considered commodity
market. And they form a finite set of names of the goods. We will use the notation S
for the set of events as purchases of the goods, and for a set of names of the
corresponding goods which are involved in the turnover in the market. It is thought
that x €S is an event that consists in purchase of the goods with the name of x.

Consider two-dimensional random vector
{vapy}: {Ix 'ax +(1_Ix)'cx’ly ‘ay +(1_Iy)‘cy }’
that describes the joint purchase of two goods x and y by the random buyer.

Assume that there is a statistical sampling from the » observations of the values of
the random vector. It can be, for example, statistics of sales of a supermarket on
products x = {bread} and y = {milk}. This usual statistics allows estimating the two-
level structure of dependences and interactions of an observable random vector
which offered in the work.

Thus, in this example, based on statistical data we need to estimate the joint
distribution function Flu, ,u y) of two-dimensional random vector { PysP y} of

revenues of goods.
Algorithm of estimation:
1. Statistical evaluation of random set basis is made on the first level. This is
the estimate of the distribution of the random set of events. Since we are
considering a two-dimensional random vector, its random set basis is the
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corresponding random set of events K which is determined the probability
distribution (11) { p (X ), X c S} under a doublet events S = {x, y } It contains 4
probabilities, which we denote accordingly:

. p(@)z P (K = @) is probability of not purchasing goods (or in other
words, it is probability the "empty" purchases of goods under the doublet
S= {x, y }, i.e. the probability that the buyer retired from supermarket without the
goods x and y).

o p({x})=P(K ={x}) is probability of purchase only goods x.

e p ({ y })z P (K = { y }) is probability of purchase only goods .

o p({x,y})=P(K={x, y}) is probability of purchase two goods.

In practice, the statistical evaluation of the distribution of random set demand
of the buyer is reduced to estimating the distribution of a random set of events K ,
i.e. to the purchasing goods. This estimate is made on the basis of an available
sample of checks of purchases on a formula:

n
p(x)=—=,
n

where n ¥ is the number of checks for a subset of goods X, nis the total number of

checks. Any market, first of all, is defined by interaction of the buyer and the seller,
that is supply and demand.

2. At the second level, we make statistical estimates of the quantitative
superstructure. Conditional distribution function (12) {F Y (u,,xeS), X c S} for
a sample using standard methods of mathematical statistics are estimated here. In
this example of the two-dimensional random vector, this collection consists of four
conditional distributions:

o F > (u X ,uy) is degenerate distribution under condition of "empty"

purchasing.
e F. lu,,u,| is one-dimensional distribution under condition of purchase
(x}UxoHy p

only goods x.
o F . (u U y) is one-dimensional distribution under condition of purchase

only goods y.
o I (x y}(ux ,uy) is two-dimensional distribution under condition of

purchase two goods x and y.

3. In the last step according to Theorem 1 (theorem on decomposition of joint
distribution on random set basis) we construct a overall statistical estimate of the
distribution of the observed two-dimensional random vector of the value of
purchases of the two goods:

F(ux,uy)ng (ux,uy)'p(g)'*‘F{x}(“xa“y)‘P({x})"'
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+F{y}(ux,uy)-p({y})+F{x’y}(“xa“y)‘P({an’})

We can introduce the simplifying assumption of independence conditional
two-dimensional distribution F{, y}(u YU y) which will lead to the fact that to

estimate the distribution of the original random vector will be sufficient estimates
no more than one-dimensional conditional distributions:

F{x’y}(u)C ’”y):F{x }(ux ,uy).F{y}(u)C ,uy).
Similar assumptions can be made by statistical estimates of random vectors of

higher dimension when is assumed the independence of the conditional distributions
of dimension greater than two, three, etc. depending on the application.

5. Conclusion

The joint distribution of the random vector {p,,xe S} is input data for a
series of practical problems [1, 2, 4]. According to Theorem 1 to estimate the joint
distribution of the random vector {p ,xe S}, we need to be able to solve the

following two problems:
Problem 1. Approximation of the E-distribution of the /-st sort which plays the role

of the random set basis (2" parameters) in our model.
Problem 2.Modeling the joint distribution of a continuous random vector

{§ r,XE S}.

Thus, the problem of modeling the joint distribution of discrete-continuous
random vector moved from the domain of a multivariate distribution function to
area of assessment of its parameters. As a rule, using real statistics we can estimate
only 2N parameters: N probabilities of //-nd sort { Py, XC S} and N marginal

distribution functions {F s, XE S }
X

For solving the first problem, we used methods that were considered in [2, 4,
7, 10]. If the random variables are independent, their joint distribution is determined
through the product of the marginal (15). Otherwise, the second problem may be
solved using the concept of copula to describe dependence between random
variables that relates the marginal distributions to their joint distribution function [5,
6,7,11,12, 13].

The statistical system can be defined as the random set of events which form
an original structure of statistical interrelations of random events. Studying
structures of statistical interrelations of random events means learning probability
distributions corresponding to random sets of the events. Therefore it is necessary
to study some fundamental structures of interdependence of systems of random
events which generate many known structures of interdependence of random
variables, random vectors, random processes and fields and demand special
research by random set methods.
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Qarsiq tip tasadiifi komiyyatlorin birgs paylanmasimin
tosadiifi-coxluqlar iizra ayrilisi

D. Semyonova, N. Lukyanova
XULASO

Isdo tosadiifi vektorlarin tosadiifi-coxluqlar iizro ayrilisi todqiq olunur. Bu vektorlarin
komponentlori ixtiyari kasilmoz va diskret tosadiifi komiyyatlorin qabariq kombinasiyasidir.
Qarisiq tipli ikiparametrli  tosadiifi komiyyotlorin  xarakteristikalari vo parametrlorin
xassolori Oyronilir. Toesadiifi-goxluqglar bazisi lizro birge paylanmanin ayrilist ilo bagh
teorem isbat olunur. Bu teorem hadisoler ciitii misalinda niimayis etdirilir.

Acar sozlor: qarisiq tipli tosadiifi komiyyot, hadisolorin tasadiifi ¢oxlugu, eventologi
paylanma, tosadiifi-goxluq bazisi, kamiyyat iist strukturu.

Ciy4aiiHO-MHOKeCTBEeHHOE Pa3JIoxkeHHe COBMECTHOIO
pacnpeaeeHus cJay4alHbIX BeJTHYUH CMELIAHHOTO THIIA

. Ceménona, H. JlykpsiHoBa
PE3IOME

B pabore uccnemyercs ciry4aiiHO-MHOKECTBEHHOE PA3JIOKEHHE CIyYalHBIX BEKTOPOB,
KOMITOHEHTBl KOTOPBIX KOHCTPYHMPYIOTCS KaK BBIMYKIas KOMOWHALUs IPOHU3BOJIBHBIX
HETIPEPBIBHBIX U JTUCKPETHBIX CIy4alHBIX BEITUUYUH. PaccMaTpuBaroTCsl XapaKTEpPUCTUKU U
CBOMCTBA napamMeTpoB IJid ABYXTTapaMETPUUICCKUX CHy‘lﬁﬁHle BCIIMYMH CMCIIAHHOI'O THUIIA.
ABTOpaMH JIOKa3bIBaeTCid TEOpeMa O pAa3JIOKEHUH COBMECTHOIO pacHpeseNieHus Mo
Clly4aifHO-MHOXECTBEHHOMY 0Oa3ucy. JlaHHas TeopeMa JEMOHCTPHPYETCS Ha IPOCTOM
HpuMepe I JyIuieTa COOBITHH.

KiroueBble ci1oBa: cityuaiiHas BeIMYMHA CMEIIAHHOTO THIIA, CIydallHOE MHOXECTBO
COOBITHH, 3BEHTOJIOTMYECKOE  paclpesielieHHe, CIIydailHO-MHOXKECTBEHHBIH  0asuc,
KOJIMYECTBEHHAS HAJACTPOUKA.
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