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1. Introduction 

 
Mathematical statistics almost always deals with either discrete or continuous 

random variables, but it is not so in real problems. Many functions of distribution 
used in various models (in particular, for modeling insurance payments or 
consumer choice) have both "continuously increasing" sites territory, and some 
positive jumps. In the present paper we consider random variables of mixed type: 

( ) ,1 νξρ ⋅−+⋅= II      (1) 
where ξ  is a continuous random variable (c.r.v.), ν  is a discrete random variable 
(d.r.v.), and I is a Bernoulli random variable with parameter ( )1== Ip P , 
( ) ( ),01 == Ip- P  such that I is stochastically independent on ξ  and ν .  

The distribution function ( )uFρ  is a mix (a convex combination) of random 
variables ξ  and ν   

( ) ( ) ( ) νξρ FpuFpuF ⋅−+⋅= 1     (2) 
and it is the function of the mixed, discrete-continuously type. Random variables of 
the form (1) are widely used in actuarial mathematics to model individual risks [1], 
in determining insurance rates and reserves, and also in reinsurance. 

                                                 
* Reported at the seminar of the Institute of Applied Mathematics in 11.09.2012 
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In this work authors consider a special case of variables (1) which have a positive 
jump at a given point c.  

Let ξ  be a c.r.v. with distribution function ( )uFξ  and finite expectation, let d.r.v. 
ν  have a degenerate distribution, i.e. ( ) 0,1 ≥=≡ν ccP , and let ν  have a distribution 
function 

                                   ( ) ( )
⎩
⎨
⎧

≥
<

=<=
.,1
,,0

cu
cu

uuF νν P  

Then (1) takes the form  
( ) cII ⋅−+ξ⋅=ρ 1                  (3) 

or it can be written equivalently 

                               
⎩
⎨
⎧ξ

=ρ
.-1,c

, ,
pyprobabilitwith

pyprobabilitwith
 

Definition 1. A random variable of the form (3) is called a "two-parametric random 
variable of mixed type". Value of jump )(1 p-  and location of the jump c are 
parameters of jump and location accordingly. In considering the location c there are 
two situations: 

1. Let c belong to a range of values of c.r.v.ξ , i.e. ( ).Ran ξ∈c  In this case  (2) 
can be written equivalently (fig.1) 

( )
( )
( ) ( )⎪⎩

⎪
⎨
⎧

≥−+

<
=

ξ

ξ
ρ .,1

,,

cupuFp

cuuFp
uF     (4) 

 

                      
 

Figure 1. Distribution function of c.r.v. ξ  and distribution function of random variable 
ρ for the case ( ).Ran ξ∈c  

 
2. Let c do not belong to a range of values of c.r.v. ξ , i.e ( ) [ ).,Ran ∞=ξ∉ bc  

In this case (2) can be written equivalently (fig.2) 
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The interval [c, b) is called "blind interval." 
 

                              
 

Figure 2. Distribution function of c.r.v. ξ  and distribution function of random  
variable ρ  for case ( ) [ ).,Ran ∞=ξ∉ bc  

 
In practice it is often assumed that ξ  has an exponential distribution. Then 

the case ( )ξ∈Ranc  describes, for example, a class of distributions which are used 
for modeling insurance payments [1]. Assuming ( ) [ )∞=ξ∉ ,Ran bc  and 0=c  we 
obtain a class of distributions of Gibbs random variables 0G  [2].  A key property of 
a Gibbs random variable is that it does not take values in the "blind interval" [0, b]. 
This property was pointed to by some interpretations of statistical theory of 
consumer choice [2], where a price of random purchase is a random variable of 
mixed type which has distribution significantly separated from zero (for most 
goods and services), while a zero value of the purchase price (corresponding to the 
absence of purchase) has a positive probability. 

In the model of individual risks the insurance payments made by an insurance 
company, are represented as the sum of payments to many individuals [1]. The 
central limit theorem provides a method for finding the numerical values for the 
distribution of sums of independent random variables [3]. Here we offer 
mathematical tools allowing to work with joint distributions of random variables of 
the mixed type (3), and generalizes the results received earlier [2, 4, 5, 6]. 

 
2. Random set decomposition 

 
Eventology [7] is a new direction of probability theory which is based on the 

Kolmogorov's axiomatics which is added by two eventological axioms: a 
sufficiency and a simpliciality [8]. The basic objects of researches are sets of 
random events and their eventological distributions. Eventology studies the 
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structures of the dependences of the sets of events. It allows to include the 
mathematical model of a person, together with his/her persuasions, in a subject of 
the scientific research of in the form of eventological distribution (E- distribution) of 
the set of his/her own events, i.e. allows to consider any kinds of the set of events 
which are perceived and/or created by a person. New eventological language, new 
eventological methods and approaches allow formulating and solving various tasks 
in socio-economic areas which did not manage to formulate and solve earlier within 
the limits of traditional approaches. 

Let's consider the set of random events A⊆S  chosen by the algebra of the 
probabilistic space ( )P,, AΩ , or (that is equivalent), random set of events 

( ) ( )S22,2,,: S→Ω PAK  under  a finite set of events S , where A⊆S  is a finite 
set of events (consisting of S=N  events, i.e. S  denote the cardinality of set S), 

S2  is the power set of S.  
Each chosen event S∈x  divides sample space into two disjoint events 

cxx +=Ω . These disjoint events are the event x  and the event xxc −Ω=  which 
is its complement. In eventology the subsets or fragments of dividing Ω are called 
events-terraces generated by the finite set of events A⊆S . All  set of events S 
divides sample space into disjoint events-terraces of the following form: 

 ( ) ,ter IIII I
cc Xx

c

XxXx

c

Xx

xxxxX
∈∈∈∈

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=              (6) 

where SS ⊆−=−Ω= XXXxx cc ,, .  
Definition 2. Events (6) are called events-terraces of I-st sort, where     
                 ( )∑

⊆

=Ω
SX

Xter  and ( ) ( ) .terter YXYX ≠⇔∅=I   

Definition 3. Eventological distribution (E-distribution) of I-st sort of the set of 
random events S  of the power of set S=N  is a collection 

( ){ }S⊆= XXpp ,I  of N2  probabilities of event-terraces of I-st sort [7] 
generated by this set of events in which 

( ) ( ) ( )( ) .ter ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
====

∈∈
II

cXx

c

Xx

xxXXKXp PPP   (7) 

The events-terraces (6) form the partition Ω  in all S⊆X : ( )∑
⊆

=Ω
SX

Xter  

and provide of probabilistic normalization ( ) 1=∑
⊆SX

Xp  for this sort of E-

distribution of the set S . 
Definition 4. Events  
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I
Xx

X x
∈

=ter      (8) 

are called events-terraces of II-nd sort. 
Definition 5. E-distribution of II-nd sort of the set of random events S of the 
power S=N  is a collection { }S⊆= Xpp X ,II  of N2  probabilities of event-
terraces of II-nd sort [7] generated by this set of events in which 

( ) ( ) S⊆⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
==⊇=

∈
XxXKp

Xx
XX ,ter IPPP .  (9) 

The event-terraces (8) form is not a partition, but only covering Ω , then the 
normalization relation for the E-distribution of II-nd sort is not satisfied. The sum 
of probabilities such event-terraces always there is more than unit: 

                                ( ) 12 >= ∑∑
⊆⊆ SS X

X

X
X Xpp . 

E-distribution of the II-nd sort is connected with E-distribution of the I-st sort 
by Mőbius inversion formulas 

                    ( ) ( ) ( ) .1, ∑∑
⊆

−

⊆
−==

YX
Y

XY

YX
X pXpYpp  

On the example of an arbitrary doublet of events { }yx,=S  with E-
distribution of I-st sort ( ) { }( ) { }( ) { }( ){ }yxpypxpp ,,,,∅  and E-distribution 
of II-nd sort { } { } { }{ }yxyx pppp ,,,,∅  we write out the Mőbius inversion 
formulas: 

( ) { }( ) { }( ) { }( ) ;1, =+++∅=∅ yxpypxppp          

{ } { }( ) { }( ) ( );, xyxpxpp x P=+=  { } { }( ) { }( ) ( );, yyxpypp y P=+=   

{ } { }( ) ( ).,, yxyxpp yx IP==  
On the other hand, 

( ) { } { } { } ;, yxyx ppppp +−−=∅ ∅  
( ) { } { } ( ) { } { } ( ) { }.;; ,,, yxyxyyxx pxypppypppxp =−=−=  

A random set of events is a random element with values in a power set S, 
where S is a finite set of selected events. The main idea of the contemporary theory 
of random sets† asserts that the structure of statistical interdependence of subsets of 
a finite set is completely determined by the distribution of the random set which is 
defined on the power set. Distribution of a random set is a convenient mathematical 
tool for description of all conceivable ways to combine elements in coalitions, in 
other words, all the ways of interaction among elements. 

                                                 
† Though the theory of random sets has well-traced connections with the multivariate statistical 
analysis, the subject of its researches is a random finite abstract set which essentially differs from a 
random vector that belongs to the abstract spaces which do not have habitual linear structures. 
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Enumerate the N random variables of the form (3) by the elements of the set S 
in order by first difference (lexicographical order). Let's consider N-dimensional 
joint distribution of random variables 

                   { } ( ){ },,1, SS ∈⋅−+⋅=∈ xcIIx xxxxx ξρ  
where for all S∈x   

• xξ is c.r.v.,  
• 0≥xc is an invariable,  
• and we associate Bernoulli random variables xI  with indicators  

                                    ( )
⎩
⎨
⎧

∉
∈

==
.,0
,,1

1
Kx
Kx

xI Kx  

The components of the random vector { }S∈xx ,ρ  are random variables of 
the mixed type. Hence we can say that the random vector { }S∈xx ,ρ  is 
constructed from a random vector { }S∈xx ,ξ  composed of N continuous random 
variables xξ , S∈x  by adding jumps at the points{ }S∈xcx , . 

Let's consider the events 

{ } { } { } { }
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⎬
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⎨
⎧
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⎨
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⎟
⎠
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⎜
⎜
⎝

⎛
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⎟
⎠
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⎜
⎜
⎝

⎛
==

∈∈∈∈
III II

cc Xx
x

Xx
x

Xx
x

Xx
xX IIII 0101I  

for all ,S⊆X  where XX c \S=  is the complement of a subset of events X to S, 
and xxc \Ω=  is the complement of an event х. Note that an event XI  means that 
all the Bernoulli random variables indexed by elements x of the set X take a value of 
1, i.e. 1=xI  for all ,Xx∈ and all the Bernoulli random variables from set cX  take 
zero value. Thus, the event XI  is a partition of the Bernoulli random vector into two 
parts: 

                      { } { } { }.,0,1, c
x XxXxxI ∈+∈=∈ S  

The number of such partitions coincides with the power of set S. In [9] is 
proved the following statement:  
Statement. The set of events { }S⊆XX ,  I  forms an exhaustive event. 

 
3. Theorem on decomposition of joint distribution on random set basis 

 
Theorem 1. For a joint distribution of two-parametric random variables of mixed 
type { }S∈ρ xx ,  the random set decomposition  

( ) { } ( ) ( ) ,,, XpxuFuxuF
X

xX
x

xxx ⋅∈=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<=∈ ∑

⊆∈ SS

SS I ρP  (10) 

takes place, where 
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• the random set basis ( ){ }S⊆XXp ,  

( ) ( ) { } { } ;01
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

====
∈∈
II

cXx
x

Xx
xX IIXp PIP    (11) 

• the quantitative superstructure is the collection of the conditional 
distribution functions ( ){ }SS ⊆∈ XxuF xX

,, : 

( ) ( ) ( ),,, ∏
∈

⋅∈=∈
c

xX
Xx

xcxxX uFXxuFxuF ξS    (12) 

where  

• ( ) { } ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<=∈

∈
X

Xx
xxx uXxuF

X
IP I ξξ ,  is the conditional distributions of a 

continuous random vector { }S∈ξ xx ,  conditioned on the event  XI  occurrence;  
• ( )xc uF

x
 is the distribution function of the degenerate random variables 

S∈xcx , , herewith ( )
⎩
⎨
⎧ ∈∀≥

=∏
∈ .,0

,,1
otherwise

Xxcu
uF

c
xx

Xx
xc

c
x

 

Proof. Consider the joint distribution of two- parametric random variables of 
mixed type of the form (3) { }S∈ρ xx ,  

                        ( ) { }⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<=∈

∈
I

S

S
x

xxx uxuF ρP, . 

The values taken by random variables { }S∈ρ xx ,  depend on the values which 
Bernoulli random variables S∈xI x ,  take. Let's notice that the number of 
partitions of all the components of the vector { }S∈xI x ,  equal to the power set S, 
then Ω=∑

∈ S2X
XI . Since, set of events { }S⊆XX ,  I  form an exhaustive events 

(6), hence from (7) ( ) ( ) ( ),XpXKX === PIP S⊆X . 
Therefore, using the formula of total probability we have the following 

representation 

           ( ) { } =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<=∈

∈
I

S

S
x

xxx uxuF ρP,    

        { } ( ) ( ) ( )XpxuFu
X

xXX
X

X
Xx

xx ⋅∈=⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤= ∑∑

⊆⊆ ∈ SS

S,IPIP I ρ . 

Consider the conditional distribution functions 

                      ( ) { } ., ⎟⎟
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xxxX uxuF IP I ρS  
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Since, random variables xρ  of a set Xx∈  accept continuous values xξ  at 
approach of an event XI , and random variables from a set cX  accept values xc , 
then 

{ } { } .
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠
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⎜
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⎛
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⎟
⎠

⎞
⎜
⎜
⎝

⎛
<

∈∈
II I

cXx
xx

Xx
xx ucuξP  

Note that random variables xξ  and xc  are independent for all S∈x , then  

{ } { } ( ) ( )∏
∈∈∈

⋅∈=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
<⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
<

c
xX

c Xx
xcx

Xx
xx

Xx
xx uFXxuFucu ,ξξ II PP , 

.where 
• XX c \S= , 
• ( )XxuF xX ∈ξ , is the joint distribution function of a continuous random 

variables { }S∈ξ xx , , 
• ( )xxc uF  is the distribution function of degenerate random variables 

S∈xcx , . 
Hence, we obtain the decomposition 

  ( ) ( ) ( ) ( ) .,, XpuFXxuFxuF
X Xx

xcxx
c

xX ⋅
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅∈=∈ ∑ ∏

⊆ ∈
ξ

S
S       (13) 

Thus, the theorem is proved. 
Note that the sum (10) contains N2  summands each of which is representable 

as a product of an element of the quantitative superstructure (12) on the 
corresponding element of the basis (11).  

Thus, it is possible to speak about two-level structure of dependences and 
interactions of the components of the random vector{ }S∈ρ xx , . The first is the 
random set level which is responsible for full structure of statistical dependences 
and interactions of random events. It forms the random set basis 

( ){ }S⊆= XXp ,p I . The second is the quantitative level which is responsible for 
structure of dependences and interactions of components of the joint distribution of 
the two-parametric random variables of mixed type in a quantitative superstructure 

( ){ }SS ⊆∈ XxuF xX ,,  as the set of the conditional distribution functions from the 
joint distribution of the continuous random vector{ }S∈ξ xx , . 

Let's consider independence of a superstructure. Let S=N  marginal 
functions of distribution of c.r.v. S∈ξ xF x ,  are known and let c.r.v. xξ are total 
independence. Then  

( ) ( )., ∏
∈

ξξ =∈
Xx

xxxX uFXxuF  
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Hence, sum (13) takes the form  

       ( ) ( ) ( ) ( )XpuFuFxuF
c

xx
Xx

xc
X Xx

xx ⋅
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
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∈⊆ ∈
ξ

S
S, .       (14) 

Further, we assume independence of the basis. E-distribution for total 
independence set of events S has to form [10]:  

                   ( ) ( ),1∏∏
∈∈

−=
cXx

x
Xx

x ppXp  S⊆X . 

Then sum (10) has following form  

( ) ( ) ( ) ( )∏∏∏∑ ∏
∈∈∈⊆ ∈

−⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=∈

cc
xx

Xx
x

Xx
x

Xx
xc

X Xx
xx ppuFuFxuF 1,

S

S ξ . (15) 

 
4. Example for the doublet of events 

 
Let { }yx,=S   be an arbitrary doublet of events with E-distribution of I-st 

sort ( ) { }( ) { }( ) { }( ){ }yxpypxpp ,,,,∅ .   
Enumerate random variables (3) of elements of set { }yx,=S    
           { } ( ) ( ){ }yyyyxxxxyx cIIcII ⋅−+ξ⋅⋅−+ξ⋅=ρρ 1,1, . 
Find the joint distribution of random variables  
               ( ) { } { }( )yyxxyx uuuuF <ρ<ρ= IP, . 
The values of the random variables depend on the values xI  and yI . In this 

example 4 variants are possible: 
1. { }0,0 ===∅ yx III  for event ∅=X  with probability ( )∅p . In that 

case yyxx cc =ρ=ρ , . 
2. { } { }0,1 === yxx III  for event { }xX =  with probability { }( )xp . In 

that case yyxx c=ρξ=ρ , . 
3. { } { }1,0 === yxy III  for event { }yX =  with probability { }( )yp . In 

that case yyxx c ξ=ρ=ρ , . 
4. { } { }1,1, === yxyx III  for event { }yxX ,=  with probability 

{ }( )yxp . In that case yyxx ξ=ρξ=ρ , . 
Note that  
          { }( ) { }( ) { }( ) { }( ) { }( )yxpxpI yxxx +=+== ,1 IPIPP . 
The events { } { } { }{ }yxyx ,,,, IIII∅   form an exhaustive event, then on the 

formula of total probability we obtain  
                           { } { }( ) =<< yyxx uu ρρ IP  
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{ } { }( ) ( )
{ } { } { }( ) { }( ) +⋅<<+

+∅⋅<<= ∅

xpuu

puu

xyyxx

yyxx

IP

IP

ρρ

ρρ

I

I
 

{ } { } { }( ) { }( )
{ } { } { }( ) { }( ).,, yxpuu

ypuu

yxyyxx

yyyxx

⋅<<+

+⋅<<+

IP

IP

ρρ

ρρ

I

I
 

Consider each summand individually.  
1. Since yyxx cc =ρ=ρ , ; xc  in ∅I  and yc has degenerate distributions,  

then 
{ } { }( ) { } { }( )=<<=<< ∅ yyxxyyxx ucucuu II PIP ρρ  
{ }( ) { }( ) ( )

⎩
⎨
⎧ ≥≥

=

==<⋅<=
∅

.,0
,,,1

,

otherwise
cucu

uuFucuc

yyxx

yxyyxx PP

 

2. Since in { }xI  the random variables yyxx c=ρξ=ρ , , xξ and yc  are 
independent, because yc has degenerate distribution, then 

{ } { } { }( ) { } { }( )=<<=<< yyxxxyyxx ucuuu II ξρρ PIP  

{ }( ) { }( ) ( ) ( ) { } ( )==⋅=<⋅<ξ=
ξ yxyxyyxx uuFuFuFucu xycx

,PP  

( )
⎪⎩

⎪
⎨
⎧

<

≥
= ξ

,,0
,,

yy

yyx
cu
cuuF

x  

where ( )xuF
xξ

 is the distribution function of c.r.v. xξ . 

3. Similarly, we obtain 
{ } { } { }( ) { } { }( )=<ξ<=<ρ<ρ yyxxyyyxx uucuu II PIP  

( ) ( ) { } ( ) ( )
⎪⎩

⎪
⎨
⎧

<

≥
==⋅= ξ

ξ ,,0

,,
,

xx

xxy
yxyx cu

cuuF
uuFuFuF y

yyxc  

where ( )yuF
yξ

 is the distribution function of c.r.v. yξ . 

4. Since yyxx ξ=ρξ=ρ , , in { }yx ,I  then 

{ } { } { }( ) { } { }( )=<<=<< yyxxyxyyxx uuuu ξξρρ II PIP ,  

{ } ( ) ( )
⎪⎩

⎪
⎨
⎧

<<

≥≥
== ξξ

,,,0

,,,,
,,

yyxx

yyxxyx
yx cucu

cucuuuF
uuF yx

yx  

where ( )yxyx uuF ,ξξ  is the joint distribution function of c.r.v. xξ  and yξ . 

In summary, we obtain the decomposition (fig.3.) 
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( ) ( ) ( ) { } ( ) { }( ) +⋅+∅⋅=
∅

xpuuFpuuFuuF yxyxyx x ,,,  

{ }
( ) { }( )

{ }
( ) { }( )yxpuuFypuuF yxyx yxy

,,,
,

⋅+⋅+  

 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. Example of the graphical representation of the joint distribution function of two-parametric 
discrete-continuous random variables xρ  and yρ (b). It is constructed from the joint 

 distribution of c.r.v. xξ  and yξ (a). 

 
We give the following interpretation for this example. Under an event in 

statistical system of a consumer choice we understand the purchases (sale) of these 
or those goods. These goods take part in trade turnover in the considered commodity 
market. And they form a finite set of names of the goods. We will use the notation S 
for the set of events as purchases of the goods, and for a set of names of the 
corresponding goods which are involved in the turnover in the market. It is thought 
that S∈x  is an event that consists in purchase of the goods with the name of x . 

Consider  two-dimensional random vector  
{ } ( ) ( ){ }yyyyxxxxyx cIIcII ⋅−+ξ⋅⋅−+ξ⋅=ρρ 1,1, , 

that describes the joint purchase of two goods x  and y  by the random buyer. 
Assume that there is a statistical sampling from the n observations of the values of 
the random vector. It can be, for example, statistics of sales of a supermarket on 
products x = {bread} and y = {milk}. This usual statistics allows estimating the two-
level structure of dependences and interactions of an observable random vector 
which offered in the work. 

Thus, in this example, based on statistical data we need to estimate the joint 
distribution function ( )yx uuF ,  of two-dimensional random vector { }yx ρρ ,  of 
revenues of goods. 

Algorithm of estimation: 
1. Statistical evaluation of random set basis is made on the first level. This is 

the estimate of the distribution of the random set of events. Since we are 
considering a two-dimensional random vector, its random set basis is the 
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corresponding random set of events К which is determined the probability 
distribution (11) ( ){ }S⊆XXp ,  under a doublet events { }yx,=S . It contains 4 
probabilities, which we denote accordingly:  

• ( ) ( )∅==∅ Kp P  is probability of not purchasing goods (or in other 
words, it is probability the "empty" purchases of goods under the doublet 

{ }yx,=S , i.e. the probability that the buyer retired from supermarket without the 
goods x  and y ). 

• { }( ) { }( )xKxp == P  is probability of purchase only goods x . 
• { }( ) { }( )yKyp == P  is probability of purchase only goods y . 
• { }( ) { }( )yxKyxp ,, == P  is probability of purchase two goods. 
In practice, the statistical evaluation of the distribution of random set demand 

of the buyer is reduced to estimating the distribution of a random set of events K , 
i.e. to the purchasing goods. This estimate is made on the basis of an available 
sample of checks of purchases on a formula: 

                                                 ( ) ,
n

n
Xp X=  

where Xn  is the number of checks for a subset of goods X, n is the total number of 
checks. Any market, first of all, is defined by interaction of the buyer and the seller, 
that is supply and demand. 

2. At the second level, we make statistical estimates of the quantitative 
superstructure. Conditional distribution function (12) ( ){ }SS ⊆∈ XxuF xX ,,  for 
a sample using standard methods of mathematical statistics are estimated here. In 
this example of the two-dimensional random vector, this collection consists of four 
conditional distributions: 

• ( )yx uuF ,
∅

 is degenerate distribution under condition of "empty" 

purchasing. 
• { } ( )yx uuF x ,  is one-dimensional distribution under condition of purchase 

only goods x .  
• { } ( )yx uuF y ,  is one-dimensional distribution under condition of purchase 

only goods y . 
• { } ( )yx uuF yx ,,  is two-dimensional distribution under condition of 

purchase two goods x  and y .  
3. In the last step according to Theorem 1 (theorem on decomposition of joint 

distribution on random set basis) we construct a overall statistical estimate of the 
distribution of the observed two-dimensional random vector of the value of 
purchases of the two goods: 

( ) ( ) ( ) { } ( ) { }( ) +⋅+∅⋅=
∅

xpuuFpuuFuuF yxyxyx x ,,,  
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{ } ( ) { }( ) { } ( ) { }( )yxpuuFypuuF yxyx yxy ,,, , ⋅+⋅+  

We can introduce  the simplifying assumption of independence conditional 
two-dimensional distribution { }( )yxyx uuF ,,  which will lead to the fact that to 
estimate the distribution of the original random vector will be sufficient estimates 
no more than one-dimensional conditional distributions: 

         { } ( ) { } ( ) { } ( )yxyxyx uuFuuFuuF yxyx ,,,, ⋅= . 

Similar assumptions can be made by statistical estimates of random vectors of 
higher dimension when is assumed the independence of the conditional distributions 
of dimension greater than two, three, etc. depending on the application. 

 
5. Conclusion 

 
The joint distribution of the random vector { }S∈ρ xx ,  is input data for a 

series of practical problems [1, 2, 4].  According to Theorem 1 to estimate the joint 
distribution of the random vector { }S∈ρ xx , , we need to be able to solve the 
following two problems: 
Problem 1.  Approximation of the E-distribution of the I-st sort which plays the role 
of the random set basis ( N2 parameters) in our model. 
Problem 2. Modeling the joint distribution of a continuous random vector  

{ }S∈ξ xx , . 
Thus, the problem of modeling the joint distribution of discrete-continuous 

random vector moved from the domain of a multivariate distribution function to 
area of assessment of its parameters. As a rule, using real statistics we can estimate 
only 2N parameters: N probabilities of II-nd sort { }S⊆Xp X ,  and N marginal 
distribution functions{ }S∈ξ xF x , . 

For solving the first problem, we used methods that were considered in [2, 4, 
7, 10]. If the random variables are independent, their joint distribution is determined 
through the product of the marginal (15). Otherwise, the second problem may be 
solved using the concept of copula to describe dependence between random 
variables that relates the marginal distributions to their joint distribution function [5, 
6, 7, 11, 12, 13].  

The statistical system can be defined as the random set of events which form 
an original structure of statistical interrelations of random events. Studying 
structures of statistical interrelations of random events means learning probability 
distributions corresponding to random sets of the events. Therefore it is necessary 
to study some fundamental structures of interdependence of systems of random 
events which generate many known structures of interdependence of random 
variables, random vectors, random processes and fields and demand special 
research by random set methods. 
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Qarışıq tip təsadüfi kəmiyyətlərin birgə paylanmasının  
təsadüfi-çoxluqlar üzrə ayrılışı 

 
D. Semyonova, N. Lukyanova 

 
XÜLASƏ 

 
İşdə təsadüfi vektorların  təsadüfi-çoxluqlar üzrə ayrılışı  tədqiq olunur. Bu vektorların 

komponentləri ixtiyari kəsilməz və diskret təsadüfi kəmiyyətlərin qabarıq kombinasiyasıdır. 
Qarışıq tipli ikiparametrli  təsadüfi kəmiyyətlərin  xarakteristikaları və parametrlərin 
xassələri öyrənilir.  Təsadüfi-çoxluqlar bazisi üzrə birgə paylanmanın ayrılışı ilə bağlı 
teorem isbat olunur. Bu teorem hadisələr cütü misalında nümayiş etdirilir.  

Açar sözlər: qarışıq tipli təsadüfi kəmiyyət, hadisələrin tasadüfi çoxluğu, eventologi 
paylanma, təsadüfi-çoxluq bazisi, kəmiyyət üst strukturu. 

 
Случайно-множественное разложение совместного  
распределения случайных величин смешанного типа 

 
Д. Семёнова, Н. Лукьянова 

 
РЕЗЮМЕ 

 
В работе исследуется случайно-множественное разложение случайных векторов, 

компоненты которых конструируются как выпуклая комбинация произвольных 
непрерывных и дискретных случайных величин. Рассматриваются характеристики и 
свойства параметров для двухпараметрических случайных величин смешанного типа. 
Авторами доказывается теорема о разложении совместного распределения по 
случайно-множественному базису. Данная теорема демонстрируется на простом 
примере для дуплета событий. 

Ключевые слова: случайная величина смешанного типа, случайное множество 
событий, эвентологическое распределение, случайно-множественный базис, 
количественная надстройка.  
 

 
 
 


